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ABSTRACT

The responses of cortical neurons are often characterized by measuring their spectro-temporal receptive
fields (STRFs). The STRF of a cell can be thought of as a representation of its stimulus ‘preference’ but it is
also afilter or ‘kernel’ that represents the best linear prediction of the response of that cell to any stimulus.
A range of in vivo STRFs with varying properties have been reported in various species, although none in
humans. Using a computational model it has been shown that responses of ensembles of artificial STRFs,
derived from limited sets of formative stimuli, preserve information about utterance class and prosody as
well as the identity and sex of the speaker in a model speech classification system. In this work we help
to put this idea on a biologically plausible footing by developing a simple model thalamo-cortical system
built of conductance based neurons and synapses some of which exhibit spike-time-dependent plasticity.
We show that the neurons in such a model when exposed to formative stimuli develop STRFs with varying
temporal properties exhibiting a range of heterotopic integration. These model neurons also, in common
with neurons measured in vivo, exhibit a wide range of non-linearities; this deviation from linearity can
be exposed by characterizing the difference between the measured response of each neuron to a stimulus,
and the response predicted by the STRF estimated for that neuron. The proposed model, with its simple
architecture, learning rule, and modest number of neurons (< 1000), is suitable for implementation in
neuromorphic analogue VLSI hardware and hence could form the basis of a developmental, real time,

neuromorphic sound classification system.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Since Hubel and Wiesel (1962) showed that, for neurons in visual
cortex, there were ‘preferred stimuli’ which evoked a more vigor-
ous response than all other stimuli, it has become commonplace to
think of discrete neural units as having stimulus preferences. The
quantification of this idea through the use of reverse, or triggered
correlation (de Boer and Kuyper, 1968) has led to the concept of
the spatio-temporal receptive field or spectro-temporal receptive
fields (STRF) in visual neuroscience. For auditory stimuli the prin-
cipal is similar, but the representational dimensions are time and
frequency. In the auditory system the term spectro-temporal recep-
tive field, also referred to as STRF, has been adopted. The STRF is the
linear filter, or kernel, that best explains or predicts the response of a
cell to any given stimulus. As the STRF is constructed on an assump-
tion of linearity, the extent to which it predicts the cells response
can be interpreted as a measure of how linear the cell is (Machens et
al., 2004). Cells with arange of non-linearities have been reported in
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vivo, e.g. Theunissen et al. (2000), Machens et al. (2004), and it has
been suggested that these non-linearities are important in inter-
preting the highly selective response of some neurons to specific
natural stimuli.

Although it is widely believed that auditory perception is based
on the responses of cortical neurons that are tuned to spectro-
temporal ‘features’ it is not clear how these features might come
in to existence. There is evidence that cortical responses develop to
reflect the nature of stimuli in the early post-natal period (Illing,
2004; Zhang et al., 2001, 2002) and that this plasticity persists
beyond early development (Wang, 2004). It has been suggested
(Coath and Denham, 2005; Coath et al., 2005) that the spectro-
temporal patterns found in a limited number of stimuli, which
reflect some putative early auditory environment, may bootstrap
the formation of these responses. Here we extend this idea to
demonstrate that unsupervised, correlation based learning, imple-
mented using conductance based synapses exhibiting spike timing
dependent plasticity (STDP), leads to responses similar to those
reported from measurements in vivo by characterizing the STRFs
in our model of auditory cortex. Also we show that the resulting
STRFs depend on the stimuli chosen to represent the formative
environment.
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If the response of a neuron is linear then convolution of the
STRF with the representation of the stimulus used to estimate the
STRF would exactly reproduce the observed response to that stim-
ulus. Not only would it reproduce this response but, using the same
method, it would be possible to predict responses to other, novel
stimuli. It has been shown, e.g. Machens et al. (2004), that some
cortical responses, or at least their gross features, can be predicted
in this way. However many cortical responses are highly non-linear
and the estimated STRFs fail not only to predict cortical responses to
novel stimuli, but fail to reproduce the responses used in their esti-
mation. In this work we investigate the linearity of the responses of
the neurons in the thalamo-cortical model by calculating the lin-
ear correlation between the response of the model cells and that
predicted by the STRE.

2. Methods
2.1. Sub-thalamic processing

The auditory system performs a spectral decomposition which can be modelled
by a finite number of band pass filters (Patterson et al., 1992), and many cells in
the auditory periphery of many different types exhibit well defined characteristic
frequencies (Trussel, 2002). In addition there is a great deal of evidence that the
auditory pathway is arranged tonotopically and little evidence to supportintegration
across frequency channels in sub-cortical areas (Trussel, 2002).

It is also well documented that the auditory system is sensitive to the temporal
structure of the amplitude envelope, particularly rising, or onset transients. This has
been shown both in physiological and psychophysical measurements (e.g. Phillips
etal., 2002; Heil, 1997). This sensitivity increases as measurements are made at suc-
cessively higher levels in the auditory pathway. Units that detect onsets are found
throughout the auditory system: in the cochlear nucleus (Frisina et al., 1985; Rhode
and Greenberg, 1994), inferior colliculus (Langner and Schreiner, 1988), thalamus
(Rouiller et al., 1981; Rouiller and de Ribaupierre, 1982), and cortex (Eggermont,
2002). It has been suggested that the emphasis given to transients in neural repre-
sentation may reduce correlations in the stimulus representation and have a role
in figure-ground separation (Coath and Denham, 2007). In addition physiologi-
cal measurements suggest that information in different parts of the tonotopically
arranged auditory system is extracted on different, frequency dependent time scales
(Krumbholz et al., 2003). In the light of this evidence our model consists of three
pre-processing stages.

2.1.1. Cochlear model

The firststage approximates processing in the cochlea. Sounds are processed
using a bank of 30 Gammatone filters (Slaney, 1994), with centre frequencies ranging
from 100 to about 8000 Hz arranged evenly on an equivalent rectangular bandwidth
scale (Glasberg and Moore, 1990). The output in each frequency channel is half-wave
rectified as a simple model of inner hair cell function.

2.1.2. Transient enhancement

The next stage of processing involves enhancement of the transients in the signal
derived from each cochlear filter. The model of transient responses used here is based
on the skewness of the distribution of energy in a time window (Coath and Denham,
2005, 2007; Coath et al., 2005). Short-term skewness is a sensitive indicator of rising
and falling energy and has a value near zero when the energy is approximately
unchanging. Although this representation identifies both onsets and offsets (positive
and negative skewness), these two responses may be characteristic of separate cell
populations. In the experiments described here only the onsets, or regions of rising
energy, have been used.

2.13. Spike generation

The last stage of the sub-thalamic processing involves the generation of spike
trains suitable as inputs for the conductance based synapses used in the model.
Sequences of spikes are generated where the inter-spike intervals are chosen from
a gamma function probability density (Dayan and Abbot, 2001) which reduces the
probability of short inter-spike intervals and models refractory effects. The resulting
spike train is converted to a time dependent rate using the estimated firing rate,
which is taken to be the analogue output of the transient sensitive processing, by a
process of spike ‘thinning’ (Dayan and Abbot, 2001).

The whole of the subcortical processing can be succinctly summarized as in
Fig. 1.

2.2. The network
2.2.1. Neurons

The neurons used are adaptive exponential integrate-and-fire (aEIF) units (Brette
and Gerstner, 2005), this approach substitutes the strict voltage threshold by a more
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Fig. 1. Summary of the sub-thalamic processing used in the model. The sound file
is first decomposed in to frequency channels using a gammatone filter bank, then
regions of rising energy within each channel are identified. Spikes trains are then
generated which are thinned to rate code the amplitude of each channel. See Section
2.1 for details.

realistic, smooth spike initiation zone (Fourcaud-Trocm and Brunel, 2005). It also
includes a variable which allows modelling of subthreshold resonances or adapta-
tion (Richardson et al., 2003). Most importantly it uses a stimulation paradigm not
of current injection, but of conductance injection which moves integrate-and-fire
models closer to a situation that cortical neurons would experience in vivo (Destexhe
et al., 2003). This modification also allows the use of conductance based synapses
as described below.

2.2.2. Synapses

There are four types of synapse present in the model. The first three representing
AAMPA, GABA, and NMDA synapses are modelled by an exponential rise and fall
of conductance as a function of the pre-synaptic spike time (Eq. (1)). The fourth
synapse type, which is based on an AAMPA synapse that exhibits synaptic depression
(referred to as dAAMPA here) is described in Section 2.2.3 below. The time course
of the conductance g for AAMPA, GABA, and NMDA synapses as a function of pre-
synaptic spike time t; is given in Eq. (1).

gl)= Y WENe W e /T - ) (1)
f

In Eq. (1)7r and 74 are the time constants for the rise and decay of the synaptic
conductance, g is the maximum conductance, and \is a normalizing factor. Wis the
synaptic weight which is adjusted by the learning rule (see Section 2.3). The values
used are collated in Table 1(Gerstner and Kistler, 2002).

2.2.3. Depressing synapses

The dynamical properties of cortical synapses can influence the temporal sen-
sitivity of cortical circuitry (Tsodyks and Markram, 1997). Synaptic responses are
context dependent, and may develop depression or facilitation, depending on the
cells involved. The model of synaptic depression (Denham, 2001) adopted is based
on a system containing three component subsystems (Ostergaard, 1990; Tsodyks
and Markram, 1997)(Fig. 2) representing:

e [-]the pool of available transmitter y,

Table 1
Time constants and conductances used in synapse models described in Eq. (1)
7 (ms) 7g (ms) £(S)

AAMPA 0.09E-3 1.50E-3 720.0E-12
GABA 0.01E-3 5.00E-3 40.0E-12
NMDA 3.00E-3 40.00E-3 1.2E-09

- Free transmitter Transmitter

re- : :
eyt pool. in cleft. Syndapt;c
spikes. Release. LORCNEhAnCE]

Reprocess. Re-uptake.
Reprocessing store.

Fig. 2. Representation of the model of synaptic depression showing the three-
centred approach described in Eq. (2)
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Fig. 3. Each ‘column’ of the network consists of eight neurons divided in to two
sections. The sub-cortical section receives input from one tonotopic channel of the
sub-thalamic processing. Each thalamic (MGB) cell is connected to a number of corti-
cal cells representing layer IV, the principal receiving layer. Layer VI cells recurrently
connect the cortex to the thalamus VIA NMDA synapses which exhibit STDP which
is the origin of the correlation based learning in the network.

o [-]the transmitter released in to the cleft x, and
e [-]the store of transmitter waiting to be reprocessed w.

Transitions between these states are controlled by time constants « and j, by the
synaptic efficacy €, and by the function f[y(t)] which is stochastic in that it incorpo-
rates a random variation in the amount of transmitter released. I(t) has values unity
or zero indicating the presence or absence of a pre-synaptic spike at time t

Z(t)=€-I(t)- fly(t)]

%:z(t)—a-x(t)

2
&= Bow() - 1) @
W
Gt =0 B wo

The synaptic parameters for Eq. (2) were adjusted so as to replicate rise and fall
times of conductances and paired pulse ratios reported in in vivo studies of pyramidal
neurons (Atzori et al., 2001).

2.2.4. Network architecture

The model auditory cortex consists of one hundred ‘columns’ eachconsisting of
eight aEIF units as illustrated in Fig. 3. The lower, sub-cortical, section represents the
junction of the inferior-colliculus (IC) with the medial geniculate body of the thala-
mus (MGB). The upper section represents a two layer cortical structure consisting of
areceiving layer of pyramidal (PY) cells (layers iii and iv (Winer et al., 2005) marked
simply as PY4 in Fig. 3) and a second layer (layer VI marked as PYg in the figure)
providing a recurrent excitatory connection to the thalamus (Guillery and Sherman,
2002), and recurrent inhibitory connection to the thalamus via the thalamic retic-
ular nucleus (RE) (Guillery and Sherman, 2002). The excitatory afferents from the
thalamus to the receiving layer of the cortical part of the model come from a number
of MGB cells. These are selected based on a Gaussian distribution of probabilities.
The probability distribution is arranged such that there is an 80% chance a PY4 cell
receiving excitation from an IC cell within its own column. This falls as the inter-
column distance d increases and is close to zero at d = 10, see Fig. 4. Connections
at d > 10 are rejected. These connections give the opportunity for cortical neurons
to integrate information from heterotopic areas of thalamus. They also stand as sur-
rogates for the cortico-cortical connections (Thomson and Bannister, 2003) which
have no explicit representation in this model.

Excitatory inputs to the thalamus come from two sources: first, the IC, that is
the output of the sub-thalamic processing stage of the model, and second, recur-
rent connections from layer VI. The cortico-thalamic connections are mediated via
NMDA type synapses which are the loci of the STDP and hence the correlation based
learning in the network, see Section 2.3. These connections come from a number
of PYg cells selected from columns based on a Gaussian distribution of probabili-
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Fig. 4. Probability distributions for connections between thalamic and cortical sub-
sections of the network.

ties. The probability distribution is arranged such that there is an 80% chance of a
thalamic cell receiving excitation from a PYg cell within its own column falling as
the inter-column distance (d) increases to ~ 10% at d = 20 see Fig. 4. Connections at
d > 20 are rejected. Inhibitory inputs to the thalamus also come from two sources:
first, the IC, in this case via a GABA type interneuron (although there is evidence for
direct connections from GABAergic cells in IC (Winer et al., 1996; Marie et al., 1997),
and second, from recurrent connection with the thalamic reticular nucleus (Guillery
et al., 1998; Guillery and Sherman, 2002).

2.3. Synaptic plasticity

STDP is the modification of synaptic weights based on the correlation between
pre- and post-synaptic firing times. Evidence for this has been gathered in vitro, and
is beginning to emerge in vivo (Jacob et al., 2007), and is believed to be a feature of
synapses which have NMDA receptors which regulate genes required for long term
maintenance of these changes (Rao and Finkbeiner, 2007). The degree of synaptic
modification (M as a percentage, potentiation or depression) is typically a function
of the number of pre- and post-synaptic action potentials, and a function of the time

synaptic modification %

Fig. 5. The window function used in STDP learning.
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interval between them, the inter-spike interval t;5;. The function of t;; which yields
M is called the STDP window function (Bi and Rubin, 2005), see Fig. 5.

In general, if a pre-synaptic spike precedes a post-synaptic spike then the
synapse is potentiated; if the timing of the spikes is reversed then the synapse is
depressed. However, if the firing rate is relatively low then it is not necessary to
look at individual spike pairs. The synaptic modification can be calculated by mul-
tiplying the cross-correlation function of the pre- and post-synaptic spike trains by
the window function chosen and integrating (or summing in the discrete case) the
result (Drew and Abbott, 2006). It is this approach that is adopted here for reasons
of computational efficiency.

One problem with correlation based learning is that the weight changes are
unstable and additional mechanisms have to be invoked to ensure that weights do
notincrease in an uncontrolled manner. Our approach in this initial work was to start
with very low weights and keep the training short. In this way we see how the pattern
of weight changes establishes itselfin the early stages of training. Another possibility
is to implement a form of homeostatic normalization, this is being investigated as
part of the next stage in the development of the model.

The window function used in this work is shown in Eq. (3) and illustrated in
Fig. 5. The synaptic modification (M) decays exponentially away from the max-
imum at tj; = —2 where M = 0.5. This function is not continuous because the
cross-correlation of the pre- and post-synaptic spike trains is calculated with the
spike times in 1 ms bins.

i+ 2
Tisi € | — 00, =2] : M = exp (%) -0.5

T 3)
Tisie[*LOO[:M:fexp( 1[l)sn) 05

2.4. Training regime

The network was trained three times, once with each of three stimulus sets. Each
set consisted of five stimuli all belonging to the same class. The three classes were

(a) 10000

N
T
0 ~
0 02 04 06 08
time (s)
White noise.
(b) 10000 3 (c) 10000
] e e e e 8000 |
T "
w6000} T 6000
I 2 5 :
4000 * R = 4000
- -
2000 0 wm 2000 |
[ —— - |
% 02 04 06 08 :
time (s) time (s)
Dual tone. Speech.

Fig. 6. Examples from each of the three classes of stimuli used in training. Each class
consisted of five similar stimuli with each stimulus being presented five times in a
random order.

* [-]White noise: five samples of white noise in one second bursts,

® [-]Dual tone: five examples of two overlapping tones each of 100 ms duration at
2.0 and 5.5 kHz preceded by varying amounts of silence with the whole stimulus
padded to approximately one second,

® [-]Speech: five speech stimuli (‘shad’, ‘mad’, ‘dad’, ‘lad’, ‘tad’) preceded by varying
amounts of silence and padded as in the previous stimulus set.

@ [

log(n)

Fig. 7. Results for white noise training. (a) Column number (i.e. position on the tonotopic axis) plotted against final synaptic weight (w;j) after training. The upper, middle,
and lower axes indicate short, medium, and long range connections respectively. (b) Synaptic weights divided in to 20 bins indicating log;o of the number of connections n
in each weight bin. (c) The number of columns traversed by the NMDA cortico-thalamic connection d against the weight of this connection.
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Examples from each of these stimulus sets are illustrated as short term Fourier
transform spectrograms in Fig. 6. Each stimulus in the set was presented 25 times
giving a total of 125 stimulus presentations per training cycle with the order of
stimuli randomized. After each presentation the cross-correlation of the pre- and
post-synaptic spike trains for each of the NMDA type synapses was calculated (in
1 ms time bins) and the value at each lag multiplied by the weighting function to
determine the synaptic modification (see Section 2.3). The synaptic weights were
then modified before the next presentation.

2.5. STRF estimation

A popular method for characterizing the responses of cortical and sub-cortical
cells is the spectro-temporal receptive field or STRF, e.g. Kowalski et al. (1996a,b),
deCharms et al. (1998), Depireux et al. (2001), Theunissen et al. (2001), Miller et
al. (2002), Elhilali et al. (2004). Some time ago it was shown how reverse corre-
lation in response to white noise could be used to characterize STRFs (Aertsen and
Johannesma, 1981).The STRFs in this report have been derived using a MATLAB tool-
box called STRFPak which is developed by the Theunissen and Gallant laboratories at
UC Berkeley (Zhang and Gill, 2006). This software incorporates methods to remove
stimulus correlations from STRF estimation (Theunissen et al., 2001; Miller et al.,
2002) allowing a broader range of stimuli (including natural stimuli) to be used for
this purpose. Although there are no constraints on the stimuli that can be used, a
large number of spikes are needed for the noise in the estimate to be reduced. Given
the dynamics of the synaptic depression (see Section 2) some types of stimuli will
evoke very few spikes and necessitate the processing of unmanageably large stimu-
lus files. For the results in this report we have used stimuli consisting of sequences
of tone combinations, or ‘random chords’, that are based on the idea of an auditory
checkerboard (deCharms et al., 1998). These consist of a continuous sequence of up
to six 20 ms tone bursts from a randomly selected range of frequencies presented
simultaneously.

The spike trains used in STRF estimation were obtained after training and with-
out further adjustment of the synaptic weights. The random chord stimuli were
presented to each of the three trained networks for a total of 300s and the time
of each spike in each of the 100 PYg neurons recorded, layer VI being regarded as

the ‘output’ layer for the purposes of this work. The STRFs illustrated in the results
section are derived from these spike trains.

2.6. Linearity

The STRF is a linear kernel. To illustrate the degree to which this linear approxi-
mation captures the behaviour of the model we calculate the correlation coefficient
between the predicted response (obtained by convolving the STRF with the spectro-
temporal representation of the stimulus used in its estimation) and the actual
response of the model. To do this we estimate the instantaneous firing rate of the
PYg cells in the model from the output spike times using a weighted sum over a
20 ms Gaussian window. The network weights used were those resulting from the
training with speech stimuli. Of the 100 PYg cells in the model 50 exhibited less
than 1000 spikes during the estimation period and these cells were excluded from
the analysis. The correlation coefficient does not take into account that the STRF
response and the experimental responses might exhibit a linear relationship but
with one or more delays between them. A general method to address this prob-
lem is the well-known linear autoregressive models using exogenous inputs (ARX) in
signal processing theory (Ljung, 1986). We investigated this potential time-delayed
linear relationship between each STRF prediction and the corresponding measured
model neuron response by finding the linear FIR filter (i.e. an ARX model having no
autoregressive terms) of the prediction that most closely resembles the measured
response. To assess the degree to which these time delayed terms might be impor-
tant we also calculate the correlation coefficient between this filtered STRF response
and the measured response for each neuron.

3. Results
3.1. Synaptic weights

The final synaptic weights after training using each of the stimu-
lus sets described in Section 2.4 can be seen in Figs. 7-9 . All weights
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Fig. 8. Results for dual tone training. See Fig. 7 for explanation.
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Fig. 9. Results for speech training. See Fig. 7 for explanation.

in NMDA synapses were initialized to 0.3 and the results in Figs. 7-9
show the weight distribution after training.

The first sub-figure of each set of three shows the column num-
ber (the tonotopic axis) on the abscissa against the weight of the
synaptic connection (wy;) for all NMDA connections originating
at that column. The distance to the destination column is also
indicated: short-range (0 < d < 4) connections marked with red
crosses on the upper axis, medium-range connections (4 < d < 8)
marked with blue dots on the centre axis and finally, long-range
connections (8 < d) marked with black plus signs on the lower axis.

The second sub-figure shows log;y of the total number of con-
nections (n) having a particular weight, with the weight values
divided in to 20 bins.

The third sub-figure plots the distance d in columns, traversed
by the NMDA connection on the abscissa against the final weight
after training.

The white noise stimulus produces a pattern of high weights
in short range connections across most of the tonotopic axis. A
large number of weights remain approximately unchanged over the
course of the training implying un-correlated firing in the network.

The dual tone stimulus produces high weights in the regions
of the tonotopic axis corresponding to energy in the stimulus but
also produces a greater number of medium-range connections.
This reflects the temporal correlations between frequency channels
inherent in the stimulus.

It is clear that the final weights for the speech stimuli, with their
richer spectro-temporal content, produce a connection pattern
with a greater number of long-range, high-strength connections

than the simpler dual-tone and white noise stimulus classes. This
is accompanied by a greater proportion of synaptic strengths that
have been forced to (or very near to) zero.

3.2. STRFs

The net effect of a range of homotopic and heterotopic pro-
jections of varying weights from across the tonotopic axis is that
the responses of the model cortical neurons will exhibit responses
that can be interpreted as STRFs in a way which is comparable to
measurements made in vivo. These were calculated using STRFPak
(Zhang and Gill, 2006) for all pyramidal neurons in layer VI. As each
of the training regimes was initiated from precisely the same start-
ing weights and connectivity it is interesting to compare the final
response of the same neuron after training with each of the three
stimulus classes. This can be seen in two representative cases in
Figs. 10 and 11. In the first case (column 55) the final responses
are similar for all three training sets. It is clear, however, that there
is a minimum in the response at ~4 kHz which is above the best
frequency of ~2 kHz. This implies the neuron will ‘respond pref-
erentially to narrow frequency bands or to constant-frequency edges
that correspond to the excitatory region’ (King and Schnupp, 1998). In
the second case (column 72) in contrast, the three final states of the
network show (a) integration across a broad range of frequencies
in temporally imprecise maxima for the noise trained network, (b)
two well defined temporally precise maxima in low-to-high order
for the dual-tone stimuli, and (c) a single maximum for the speech
stimuli.
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Fig. 10. STRFs for PYg55 showing simple geometry from each of the three stimulus
classes. (a) White noise, (b) dual tone, and (c) speech.
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Fig. 11. STRFs for PY72 showing more complicated heterotopic integration which
is markedly different for each of the three stimulus classes. (a) White noise, (b) dual
tone, and (c) speech.

3.3. Linearity

Fig. 12 shows the values of the correlation coefficient between
the response of each of the model cells and the prediction by the
STREF for that cell—these values have been sorted and arranged in
ascending order of correlation coefficient on the abscissa. The upper
solid line illustrates the values from the ARX filtered prediction and
hence represents, for each neuron, an upper bound on the value
of the correlation when linear combinations with time delays are

corr. coeff.

corr. coeffs order

Fig. 12. The correlation coefficients between the model response and (lower broken
line) the STRF prediction and (upper solid line) the ARX filtered STRF prediction.
These represent a direct measure of the linearity of each of the PYg cells. The cells
are arranged in increasing order of correlation coefficient along the abscissa. They
exhibit a wide range of values from ~ 0.22 to ~ 0.42 where a significant change
would be 0.03 (95% confidence).

included. The values for the un-filtered STRF prediction (lower bro-
ken line) are very close to these values indicating that the majority
of the predictive capacity can be accounted for without taking in
to account delays. The neurons exhibit a highly significant range
of linearities, as do in vivo cortical responses, e.g. Machens et al.
(2004), however it is difficult to compare these results directly as
physiological measurements are frequently made on the basis of
membrane potentials, with action potentials blocked pharmaco-
logically, rather than using spike rates.

4. Discussion

The simple nature of the neuron and synapse models used
here, and the implementation of the STDP learning rule, make this
approach eminently suitable for implementation in neuromorphic
analogue VLSI hardware (Indiveri et al., 2006). For the hardware
implementation the learning rule would be modified to one that
is based on single pairs of pre- and post-synaptic action potentials
localized in time as well as space. In this way the model could form
the basis of a developmental, real time, neuromorphic sound clas-
sification system. It has previously been shown that ensembles of
STRF-like kernels derived from formative stimuli respond to stimuli
in such a way as to preserve information about what the stimulus
is, who is saying it, and in what manner it is being said (Coath and
Denham, 2005; Coath et al., 2005). Useful kernels exhibited a range
of response types and were of intermediate temporal extent, these
ideas are related to interesting work in the field of vision (Ullman
et al.,, 2002).

The work presented here goes some way towards putting these
ideas on a biologically plausible footing by showing that correlation
based learning in a model thalamo-cortical system can lead to an
ensemble of responses whose STRFs also exhibit a wide range of
simple and integrative responses that are, in some way, related to
properties of the formative stimuli. The model cortex, with its range
of spectro-temporal preferences exhibited by the PYg neurons, can
be seen as an ‘ensemble of feature extractors’ (Coath and Denham,
2005). However, in this case the formation of the ensemble is stim-
ulus driven, and by mechanisms that could be implemented in the
neural substrate.

The weights resulting from training the network with speech
result in responses for each of the model cortical cells that exhibit
a wide range of linearities. This is revealed by the fact that there are
a large range of values for the correlation coefficient between the
response of each model neuron and the prediction on the basis of
its STRFE. This is despite the fact that the response being predicted
is precisely the one that was used to estimate the STRF. This is con-
sistent with the situation revealed by physiological measurements
although, as mentioned in Section 3.3 direct comparisons are diffi-
cult. The origins of these non-linearities could be in the long-range,
high-strength connections that are evident in the network trained
using more complex stimuli (see Fig. 9(c)); work is now underway
to investigate this. These non-linearities are important in interpret-
ing results that show that while STRFs appear to predict responses
to certain classes of stimuli well, e.g. Klein et al. (2000), it is clear
that neurons can exhibit a high degree of selectivity in response
to certain natural stimuli (Theunissen et al., 2000; Machens et al.,
2004). Further work is now underway which, it is hoped, will lead
to results which will allow a fuller account of the nature and effects
of non-linearities in these model cortical responses.
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